We present a multi-stage user study focusing on 4 factors—distribution size of clusters, number of points, size ofpoints, and opacity of points—that influence cluster identification in scatterplots. From these parameters, we have constructed 2 models, a distance-based model, and a density-based model, using the merge tree data structure from Topological Data Analysis. Our analysis demonstrates that these factors play an important role in the number of clusters perceived, and it verifies that the distance-based and density-based models can reasonably estimate the number of clusters a user observes.
Continue reading