Homology-Preserving Multi-Scale Graph Skeletonization Using Mapper On Graphs
Homology-Preserving Multi-Scale Graph Skeletonization Using Mapper On Graphs |
Abstract
Node-link diagrams are a popular method for representing graphs that capture relationships between individuals, businesses, proteins, and telecommunication endpoints. However, node-link diagrams may fail to convey insights regarding graph structures, even for moderately sized data of a few hundred nodes, due to visual clutter. We propose to apply the mapper construction—a popular tool in topological data analysis—to graph visualization, which provides a strong theoretical basis for summarizing the data while preserving their core structures. We develop a variation of the mapper construction targeting weighted, undirected graphs, called {mog}, which generates homology-preserving skeletons of graphs. We further show how the adjustment of a single parameter enables multi-scale skeletonization of the input graph. We provide a software tool that enables interactive explorations of such skeletons and demonstrate the effectiveness of our method for synthetic and real-world data.
Downloads
Citation
Paul Rosen, Mustafa Hajij, and Bei Wang. Homology-Preserving Multi-Scale Graph Skeletonization Using Mapper On Graphs. Topological Data Analysis and Visualization (TopoInVis), 2023.
Bibtex
@article{rosen2023mog, title = {Homology-Preserving Multi-scale Graph Skeletonization Using Mapper on Graphs}, author = {Rosen, Paul and Hajij, Mustafa and Wang, Bei}, journal = {Topological Data Analysis and Visualization (TopoInVis)}, year = {2023}, abstract = {Node-link diagrams are a popular method for representing graphs that capture relationships between individuals, businesses, proteins, and telecommunication endpoints. However, node-link diagrams may fail to convey insights regarding graph structures, even for moderately sized data of a few hundred nodes, due to visual clutter. We propose to apply the mapper construction---a popular tool in topological data analysis---to graph visualization, which provides a strong theoretical basis for summarizing the data while preserving their core structures. We develop a variation of the mapper construction targeting weighted, undirected graphs, called {mog}, which generates homology-preserving skeletons of graphs. We further show how the adjustment of a single parameter enables multi-scale skeletonization of the input graph. We provide a software tool that enables interactive explorations of such skeletons and demonstrate the effectiveness of our method for synthetic and real-world data.} }